
Regime Switching and Insurance Cycles

By Colin Priest BEc FIAA

Synopsis

Traditional time series techniques fail when the duration of historical cycles varies. A
great deal of the variability experienced by insurers within the insurance cycle is due to
the varying cycle periods.

This paper introduces the use of regime switching models as a means of modelling
insurance cycles and applies a saw-tooth model to two sets of historical data with good
results.

The process of estimating parameters for a regime switching model can be quite difficult
using traditional techniques. A more tractable Gibbs sampling algorithm has been applied
to break the model into simple components.



Regime Switching and Insurance Cycles

A Real Life Problem

A client came to me with a problem: a long tailed financial insurance class had
occasional bad years, and the client wanted to know whether these bad years were part of
a cycle, and if so, could that cycle be predicted so that losses could be recognised earlier
(triangle reserving techniques took years to recognise the bad years) and perhaps even
prevented or reduced in severity?

It quickly appeared that these claim frequencies were related to the building cycle – the
number of building approvals, which fluctuated over time. I then needed to forecast the
building cycle in order to forecast the occurrence of bad claim years.

Graph 1: The Building Cycle

The Building Cycle

25,000

30,000

35,000

40,000

45,000

50,000

55,000

D
e
c-

7
9

D
e
c-

8
0

D
e
c-

8
1

D
e
c-

8
2

D
e
c-

8
3

D
e
c-

8
4

D
e
c-

8
5

D
e
c-

8
6

D
e
c-

8
7

D
e
c-

8
8

D
e
c-

8
9

D
e
c-

9
0

D
e
c-

9
1

D
e
c-

9
2

D
e
c-

9
3

D
e
c-

9
4

D
e
c-

9
5

D
e
c-

9
6

D
e
c-

9
7

D
e
c-

9
8

D
e
c-

9
9

Quarter

A
p

p
ro

va
ls

We see in Graph 1 that the pattern looks to be regular with a sort of saw-tooth pattern, but
also with some possible seasonal effect within the year.

The Failure of Traditional Forecasting Techniques

The first step was to run the data through some forecasting software. The particular
software used has an "expert selection" option that attempts to fit a range of models
including exponential smoothing and a Box Jenkins approach to traditional time series. A
large negative was that I had to tell the software the length of the cycle period in order for
it to fit a model.



Graph 2: Traditional Time Series Analysis

The values in Graph 2 show the model fitted by the software. The output is shown in
Table 1. Having to tell the software the length of the cycle is the reverse of what was
wanted – we wanted the forecasting method to tell us what the data infers about the cycle
length. This approach also has the drawback that each cycle is fixed to exactly the same
length. The historical data is not consistent with this assumption, as the past two cycles
have been clearly longer than the previous three. Any attempt to price multi-year
smoothing reinsurance using this model would underestimate the variability of
occurrence of bad years and perhaps estimate an incorrect price as a result. A good
forecast model would provide an estimate the variability of cycle lengths.

A further problem is that the forecast does not appear to be obtaining the correct
amplitude of the cycles. The troughs of the historical cycles have been at values relatively
close to one another (approximately 29,000 approvals per quarter), yet the forecast value
of the next trough lies considerably higher than these historical values.

Finally, the historical cycles have different shapes because the location of the peak lies at
different durations within the cycle. Yet the traditional model repeats the shape of the last
cycle, a slow upward movement followed by a fast downward movement.



Table 1: Output from Traditional Time Series Forecasting

Regime Switching Models

Regime switching models are characterised by a number of discrete regimes within which
different model parameters apply. From time to time the model switches from one regime
to another and the characteristics of the observations change to match the underlying

Expert data exploration of dependent variable Apps
-------------------------------------------------------------------------------
Length 82  Minimum 26677.000  Maximum 52803.000
Mean 37713.412 Standard deviation 5739.178

Classical decomposition (multiplicative)
    Trend-cycle: 7.86%  Seasonal: 42.39%  Irregular: 49.76%

Choice is narrowed down to Box-Jenkins or exponential smoothing.

Box-Jenkins outperforms exponential smoothing by 3004.541 to 5308.574 out-of-
sample
Mean Absolute Deviation. I tried 210 forecasts up to a maximum horizon 20.

Series is stationary but seasonal.

Recommended model: Box-Jenkins

Forecast Model for Apps
ARIMA(2,0,0)*(1,0,0)

Term          Coefficient  Std. Error  t-Statistic  Significance
-------------------------------------------------------------------------------
a[1]           1.1406       0.1064      10.7160       1.0000
a[2]          -0.3507       0.1068      -3.2850       0.9985
A[20]          0.7594       0.0781       9.7296       1.0000
_CONST      1906.6126

Within-Sample Statistics
---------------------------------------------------------------
Sample size 82                   Number of parameters 3
Mean 3.771e+004                  Standard deviation 5774
R-square 0.791                   Adjusted R-square 0.7857
Durbin-Watson 2.075              * Ljung-Box(18)=33.02 P=0.9834
Forecast error 2673              BIC 2844
MAPE 0.04778                     RMSE 2624
MAD 1852



characteristics of that particular regime. These regime switches represent structural
changes occurring in the process being modelled.

Kim and Nelson (1996) describe the development of regime switching models within
econometrics. Of particular interest is the use of regime switching models to describe
economic cycles in which economic growth and recession are the two possible regimes.
An economy cycles between these two regimes. A regime switching model allows the
econometrician to measure the different characteristics of growth and recession.

Harris (1999) describes an actuarial application of regime switching models in
investment modelling. He derives a Regime Switching Vector Autoregression model that
describes investment returns for different classes of assets. His model has regimes for
stability and uncertainty.

The reason that regime switching models have only come into use in relatively recent
times is that they are different to fit parameters to using traditional least squares and
maximum likelihood methods. At no point of time can one directly observe which regime
a process lies in. Regime choices can only be inferred by observed data. So the regime
values must be treated as unobserved data.

Estimation of parameters for regime switching models has become computationally
feasible due to the development of Monte Carlo Markov Chain (MCMC) methods, to
which the Gibbs Sampler belongs.

Gibbs Sampling

Gibbs-sampling is an MCMC algorithm for approximating joint distributions by sampling
from conditional distributions. Suppose you wish to estimate a multivariate probability
function f(x1, x2, …, xN) but that doing so directly is computationally unfeasible. The
Gibbs sampler algorithm can produce samples from this multivariate distribution using
the following algorithm:

1. Start with an arbitrary set of starting values (z1, z2, …, zN)
2. Draw a sample from f(z1 | z2, …, zN)
3. Draw a sample from f(z2 | z1, z3, …, zN)
4. Iterate through j (where steps 2 & 3 are the first two iterations) to sample from f(zj |

z1, zn, …zj-1, zj+1, …, zN)
5. The last iteration of j is f(zN | z1, z2, …, zN-1)

Steps 2 to 5 can be repeated K times. The distribution of the sample values will converge
to f(x1, x2, …, xN).

You can store the sample values and use them to approximate f(x1, x2, …, xN). don't store
the early sample values because they won't have converged towards the target
distribution because the starting values were arbitrary.



The Initial Model

The notation for the fitted value at time t is Ft. The notation for the observed value at time
t is Yt.

The initial model will be a series of lines joining the regime switches. Each regime switch
will be a node occurring at a particular time and having a particular number of approvals
per quarter. The notation for the location of the nth node will be Rs[n] and the notation for
the number of approvals per quarter of the nth node will be Pt[n].

Graph 3: Model Nodes

25,000

30,000

35,000

40,000

45,000

50,000

55,000

D
e

c-
7

9

D
e

c-
8

1

D
e

c-
8

3

D
e

c-
8

5

D
e

c-
8

7

D
e

c-
8

9

D
e

c-
9

1

D
e

c-
9

3

D
e

c-
9

5

D
e

c-
9

7

D
e

c-
9

9

Quarter

A
p

p
ro

va
ls

Node 6:
xValue Rs[6]
yValue Pt[6]

Node 7:
xValue Rs[7]
yValue Pt[7]

At points of time between nodes we will linearly interpolate between the nodes, but we
will adjust for which quarter of the year we are in, to allow for seasonality. Thus:

Yt = Pt[r] * Lft + Pt[r+1] * (1 – Lft) + Qf1 * (qtrt = 1) + Qf2 * (qtrt = 2)
+ Qf2 * (qtrt = 2) + Sigma * et

Where:

r is the regime index at time t, beginning at 1
Lft is the linear factor at time t

and Lft = (Rs[r + 1] – t) / (Rs[r + 1] – Rs[r])
Qf1 is the seasonal factor for the first quarter
Qf2 is the seasonal factor for the second quarter
Qf3 is the seasonal factor for the third quarter
Qtrt is the quarter number for time t (e.g. March quarter = 1)
Sigma is the standard deviation of the error term
et is a random variable ~ N(0, 1)



The first data point lies somewhere between a peak and a trough. Rather than extrapolate
backwards to the previous node, I have set Rs[1] to equal the first time period and to be a
starting node rather than a regime switching node.

Sampling Pt and Qf, given Rs and Sigma and Y

If we know when each node occurs, then the remaining parameters can be estimated via
linear regression using maximum likelihood. The dependent value is Ft , the independent
variables are the Pt and Qf parameters, and the data is Lft and qtrt.

The notation for the Pt and Qf values is Beta.

The prior distribution is Beta | Sigma ~ N(Beta0, Sigma0). We can choose informative
priors or uninformative priors. For the purpose of this exercise we are using
uninformative priors – so Sigma0 will contain high covariances to signify that any value
is just as likely.

Because of the assumption of normality, the likelihood function of the parameters is
given by:

L(Beta | Sigma, Y)
= (2 * π * Sigma2)-N/2 * exp(-1 / (2 * Sigma2) * (Y – X * Beta)T(Y – X * Beta)

where N is the number of data points.

The posterior distribution is Beta | Sigma, Y ~ N(Beta1, Sigma1). Where:

Beta1 = (Sigma0
-1 + Sigma-2 * XTX)-1 (Sigma0

-1 * Beta0 + Sigma-2 * XTY)
Sigma1 = (Sigma0

-1 + Sigma-2 * XTX)-1

This follows since:

f(Beta | Sigma, Y) α f(Beta | Sigma) * L(Beta | Sigma , Y)

For a full derivation see Kim and Nelson (1999).

While the prior distribution has been uninformative, we can add prior knowledge in other
ways. In this paper rejection sampling has been used. Parameter samples that have trough
values higher than adjacent peak values have been rejected and a replacement sample
taken until an appropriate sample set of parameters is obtained.

Since Sigma1 is a covariance matrix we should generate sample values for the parameters
such that:

BetaSample = Beta1 + A * E



Where:

ATA = Sigma1 (i.e. A is the Cholesky decomposition of Sigma1)
E is a vector containing samples from N(0, 1)

Sampling Sigma, given Rs and Y and Pt and Qf

Once we know the regime locations and the parameters, we can make an inference on the
standard deviation of the error term because we have both Yt and Ft.

Given that et ~ N(0, 1), then
Sigma * et ~ N(0, Sigma)

So Σ et ~ χ2(N)
and W = Σ�Sigma * et) ~ Γ(N / 2, 2 / Sigma)

In order to take advantage of natural conjugate prior distributions, we use a prior:

1 / Sigma2 | B ~ Γ(v0 / 2, 2 / d0)

The uninformative prior is a small d0.

Because of the assumption of normality in the model, the likelihood function is given by:

L(1 / Sigma2 | Beta, Y)
= (2 * π * Sigma2)-N/2 * exp(-1 / (2 * Sigma2) * (Y – X * Beta)T(Y – X * Beta)

We multiply the prior density by the likelihood function to get the posterior density.

1 / Sigma2 | B, Y ~ Γ(v1 / 2, 2 / d1)

where:
 v1 = v0 + N
d1 = d0 + (Y – X * Beta)T(Y – X * Beta)

For a full derivation see Kim and Nelson (1999). Note that they use a different
parameterisation of the Gamma to that used in this paper.

Once the gamma distribution parameters have been calculated, the new value for Sigma
is generated by sampling from the gamma distribution and taking that sample to the
power of minus two.



Sampling Rs[r] (for each r, where r > 1 and r < 10), given Sigma and Y
and Pt and Qf and Rs[j] (for all j, where j < > r)

The end nodes are special cases requiring special treatment because there is only a node
on one side and because of the possibility that the node may lie outside the data area.
However we can easily sample each of the other node locations in turn when we have a
node on each side of the sampled node and when all of the node possibilities lie within
the data range. Note that we have used an implicit prior – the number of nodes is equal to
10.

We can start by an intuitive test for rejection sampling:

Rs[r-1] < Rs[r] < Rs[r+1]

We limit the possible choices of node location to those locations that lie between the
location of the previous node and the location of the subsequent node.

Furthermore we are limiting the range of the ninth node (the second last) to lie within the
period for which data is available.

For each possible value of Rs[r] = i (there are a finite number of possibilities since Rs[r]
can only take integer values) we calculate the probability of Rs[r] taking on that value,
given all of the other information.

Using Bayes Theorem:

Pr( Rs[r] = i | Y) = L( Y | Rs[r] = i) * Pr( Rs[r] = i ) / L(Y)

Now we can calculate:
L(Y) = Σj L( Y | Rs[r] = j) * Pr( Rs[r] = j)

Pr( Rs[r] = i ) is a prior distribution. We shall use an uninformative prior (although we
will subsequently use some rejection sampling). So this means that the probability that
Rs[r] = i, given Y is equal to the ratio of the likelihood for location i to the sum of the
likelihoods for all possible locations.

Pr( Rs[r] = i | Y) = L( Y | Rs[r] = i) / Σj L( Y | Rs[r] = j)

As suggested in the previous paragraph further rejection sampling is required. Rs[r]
should only take on values for which a peak is higher than the troughs either side, and a
trough is lower than the peaks either side. In this way we specify that the model must
have a saw-tooth shape rather than a being more generic stepwise linear function.

Once we have the probability of each location value it is a simple matter to generate a
uniform random variate and compare that to the cumulative probability function to
generate a random location.



Sampling Rs[10], given Sigma and Y and Pt and Qf and Rs[j] (for all j,
where j < > 10)

The tenth node is special. It lies either on the last data point, or afterwards. The key
question is about what can be inferred from the data and the other parameters that would
affect the probability of different node locations.

There are three data about the other nodes that could infer something useful:

1. The gaps between the nodes
2. The height of the nodes
3. The type of the last node (peak or trough)

There is one aspect about the data that could infer something useful:

1. The slope of the current trend

Using the slope of the current trend, we can infer the height of the node given its location.
We can then compare that height to the distribution of the other height samples to infer
the likelihood of that height. We can also compare the gap in location between the tenth
node and the ninth node to the historical gaps. A negative binomial distribution can be
used for this purpose. Thus the likelihood of the last regime lasting a particular time is
proportional to the likelihood of the node height for the last node extrapolated from the
fitted slope times the probability of the gap between the ninth node and the tenth node.

L( Rs[10] = i | Y, Rs[r] ) α L (extrapolated(Pt[10]) | Y, Pt[r] )
* Pr (Rs[10] – Rs[9] | Rs[r] )

Graph 4: Extrapolating A Height For the Tenth Node
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Initial Model Results

Table 2: Initial Model Results

Variable Mean Std Dev Median Mode
Rs[2] 5.120 0.675 5 5
Rs[3] 10.407 0.509 10 10
Rs[4] 18.098 0.746 18 18
Rs[5] 28.865 0.374 29 29
Rs[6] 34.138 0.345 34 34
Rs[7] 42.064 0.398 42 42
Rs[8] 57.947 0.224 58 58
Rs[9] 62.223 0.421 62 62
Rs[10] 81.903 1.943 81 80
Sigma 1,620 160 1,606
Qf1 -2,642 368 -2,638
Qf2 1,123 386 1,128
Qf3 1,333 391 1,332
Pt1 36,732 1,121 36,789
Pt2 40,698 1,029 40,669
Pt3 26,920 1,067 26,910
Pt4 42,353 882 42,347
Pt5 28,202 946 28,203
Pt6 49,156 936 49,168
Pt7 30,633 747 30,641
Pt8 50,620 780 50,624
Pt9 30,031 801 30,030
Pt10 45,917 1,765 45,595
Delta Rs[i] 9.598 5.279 8 5
Upwards 12.131 5.992 13 5
Downwards 7.064 2.645 7 4

The model provides quite robust estimates of the parameters with run times much faster
than that required to solve a non-linear least squares regression. Note that the heights of
the troughs are quite close to one another.

The seasonal parameters suggest that the December and March quarters have lower
building approvals and that the June and September quarters are not significantly
different from one another. This makes intuitive sense, because in Australia the summer
holiday break (including the 6 week long school holiday break) includes the closure of
much of the building industry.

Upward trends have had both a longer average duration and more variability in duration
than downward trends. This, combined with the lower variability of trough heights,
means that we can forecast downward trends with more certainty than upward trends.



Graph 5: Historical Data vs Average Fitted Values
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The fitted values for the history show a remarkably good match to the data. A great deal
of the apparent variability in the historical data was due to seasonal effects. I admit to
being surprised at how well the history is described by a series a straight lines with
seasonal adjustment.

Graph 6: Probabilities of Different Locations of the Next Regime Switch
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The model predicts that it is almost certain that the current growth trend will finish during
the year 2000.



A Second, More Parsimonious Model

While all of the parameters in the initial model were significant, not all were significantly
different to one another. In order to make the model more parsimonious, we should
combined some of these variables:

•  combine the first two trough heights
•  combine all subsequent trough heights
•  combine the first two peak heights
•  combine all subsequent peak heights
•  combine the June and September seasonal factors

These changes serve a secondary purpose, in that they simplify the extension of the
model to forecast the eleventh and subsequent regime switching points.

Finally, we are going to include some prior knowledge into the model. From 1st July 2000
a goods and services tax (a type of VAT) will be charged in Australia. This will increase
the cost of building construction. People have been moving construction activity earlier
to avoid paying the tax. So it is expected that approval levels will drop after June 2000.
The monthly approval figures (available for April) also suggest a drop off. So the model
will use a prior distribution for Rs[10] as below:

Pr( Rs[10] = March 2000 ) = 0.5
Pr( Rs[10] = June 2000 ) = 0.5

This is identical to using rejection sampling for locations of Rs[10] after June 2000.

Finally, we will use only the length of the growth regimes (rather than both growth and
decline regimes) to infer the location of the tenth node, since it ends a growth phase.

Sampling Rs[11+], given Sigma and Y and Pt and Qf and Rs

Sampling the location of the eleventh and subsequent nodes is simpler than sampling the
tenth node because there is no data between the nodes.

The location of the node is taken by sampling from the distribution of the length of the
upward or downward regimes and adding that period to the time of the previous node.

The height of the node is the same as the previous trough or peak.



Final Model Results

Graph 7: Final Model
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The confidence interval for the forecast broadens rapidly after the next trough in the cycle
due to the great variability in the historic growth phases.

Graph 8: Location of the Next Trough
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The model not only gives me an estimate of the next trough, but also the probability of
different times.

Best of all, the model automatically produces scenario samples from the joint distribution
of all of the parameters. These scenarios can be used to price smoothing reinsurance, and
as worked examples of the effects of the cover.



Graph 9: Sample Scenarios
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The parameters of the final model are shown in Table 3.

Table 3: Parameter Estimates of Final Model

Variable Mean Std Dev Median Mode
Rs[2] 4.707 0.928 5 5
Rs[3] 10.229 0.568 10 10
Rs[4] 18.637 0.786 19 19
Rs[5] 28.607 0.540 29 29
Rs[6] 34.362 0.490 34 34
Rs[7] 41.853 0.525 42 42
Rs[8] 57.495 0.524 58 58
Rs[9] 63.263 0.516 63 63
Rs[10] 80.981 0.136 81 81
Rs[11] 88.000 2.850 88 87
Rs[12] 99.870 6.367 99 97
Rs[13] 107.236 7.475 106 108
Sigma 1,994 191 1,978
Qf1 -2,633 460 -2,641
Qf2 1,301 341 1,300
Pt1 36,455 1,491 36,508
Pt2 41,692 936 41,689
Pt3 27,892 922 27,887
Pt4 48,445 682 48,439
Pt5 30,057 700 30,057



Application to US Combined Ratios

Cummins et al (1991) present a history of combined ratios in the US, summarised in
Graph 10 below. We can apply the same techniques described previously in this paper to
obtain an estimate of the statistical distributions of the time taken from tough to peak and
from peak to trough.

Graph 10: US Combined Ratios
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The starting year of data (1951) and the last year of data (1987) both are allocated nodes
that are held fixed, much like the starting period for the building cycle example. These
two nodes are neither peaks nor troughs. They just exist at the locations at which the data
has been censored.

The node locations and heights are then generated in the same manner as for the building
cycle data. In this example we are only interested in the location of the nodes, not the
height, but the height of the nodes is required in order to generate the location of the
nodes.



Table 4: Location of Nodes for US Combined Ratios

Variable Mean Std Dev Median Mode
Rs[1] 0.000 0.000 0 0
Rs[2] 2.942 0.782 3 3
Rs[3] 5.811 0.482 6 6
Rs[4] 8.811 1.009 9 8
Rs[5] 13.279 0.672 13 13
Rs[6] 15.452 0.649 15 15
Rs[7] 17.790 0.482 18 18
Rs[8] 20.937 0.267 21 21
Rs[9] 23.994 0.079 24 24
Rs[10] 26.727 0.447 27 27
Rs[11] 33.145 0.352 33 33
Rs[12] 36.000 0.000 36 36

Note that the standard deviation of the estimates varies between nodes. The highest
standard deviation is for the fourth node, when the combined ratio bottomed out, and did
not change much for a few years.

Graph 11: Fitted Model vs History
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Once again, the saw-tooth model, while simple, provides a good explanation of the
behaviour of the cycle. Over short periods of time (two to three years) the saw-tooth
model is the most logical because some insurance changes happen in a saw-tooth manner:

•  in long tail business the results come in slowly, so the insurer's perception of the risk
changes gradually

•  premiums earn over a period of time, so even if new information meant that you
could accurately estimate the risk price and quality, reported results such as the
combined ratio are still affected by past price and quality linearly over the earning
period



•  due to the inability of measuring the underlying factors, insurers are uncertain of the
extent that their results are due to good management or good luck, or bad
management or bad luck. It takes a few years of similar or trending results for them to
be certain enough to change their minds. This then prompts the regime switch
between production goals and quality goals.

Graph 12: Distribution of Periods from Trough to Peak vs Peak To Trough
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The modal times for both upward trends and downward trends are both a value of three,
and the mode is quite dominant, more dominant than one would expect if the underlying
distribution was one of the commonly used statistical distributions. It would be a good
topic for further research to explain the significance of the three year period in US
insurance practice.

Conclusion

Gibbs Sampling methodology enables the complicated process of estimating parameters
for a regime switching model to be broken down into simpler, more tractable
components. The computer time taken to estimate the model parameters appears to be
much faster than that required for non-linear regression, as the likelihood or least squares
function to be minimised has many local minima. A further advantage is that it explicitly
allows for information that comes from the professional judgement of the actuary via the
use of prior distributions. Finally, Gibbs sampling calculates sample values as part of its
methodology. These can be used as sample forecast scenarios for pricing and risk
management purposes.

The use of regime switching models enables quite intuitive models to be applied to data.
In the case studies presented in this study, the model is a saw-tooth – a series of straight
lines joining a series of peaks and troughs. Non-technical insurance people can easily
understand the basis of such models. The results can be presented as probabilities, which



make for simple graphical presentations. There may even be some theoretical basis for
using a saw-tooth model to model the insurance cycle.

Analysis of historical insurance data shows that the insurance cycle varies in length.
Regime switching models are more appropriate for modelling the insurance cycle than
traditional time series techniques because they allow the actuary to make inferences about
the variability of cycle periods as well as the variability of the heights of the peaks and
troughs.
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